extension | φ:Q→Aut N | d | ρ | Label | ID |
C33⋊1(C3⋊S3) = C34⋊4C6 | φ: C3⋊S3/C1 → C3⋊S3 ⊆ Aut C33 | 27 | | C3^3:1(C3:S3) | 486,146 |
C33⋊2(C3⋊S3) = C34⋊6S3 | φ: C3⋊S3/C1 → C3⋊S3 ⊆ Aut C33 | 27 | | C3^3:2(C3:S3) | 486,183 |
C33⋊3(C3⋊S3) = 3+ 1+4⋊C2 | φ: C3⋊S3/C1 → C3⋊S3 ⊆ Aut C33 | 27 | 18+ | C3^3:3(C3:S3) | 486,236 |
C33⋊4(C3⋊S3) = 3+ 1+4⋊3C2 | φ: C3⋊S3/C1 → C3⋊S3 ⊆ Aut C33 | 27 | 9 | C3^3:4(C3:S3) | 486,249 |
C33⋊5(C3⋊S3) = C34⋊5S3 | φ: C3⋊S3/C3 → S3 ⊆ Aut C33 | 18 | 6 | C3^3:5(C3:S3) | 486,166 |
C33⋊6(C3⋊S3) = C34⋊7S3 | φ: C3⋊S3/C3 → S3 ⊆ Aut C33 | 27 | | C3^3:6(C3:S3) | 486,185 |
C33⋊7(C3⋊S3) = C3×He3⋊4S3 | φ: C3⋊S3/C3 → S3 ⊆ Aut C33 | 54 | | C3^3:7(C3:S3) | 486,229 |
C33⋊8(C3⋊S3) = C34⋊10C6 | φ: C3⋊S3/C3 → S3 ⊆ Aut C33 | 81 | | C3^3:8(C3:S3) | 486,242 |
C33⋊9(C3⋊S3) = C3×He3⋊5S3 | φ: C3⋊S3/C3 → S3 ⊆ Aut C33 | 54 | | C3^3:9(C3:S3) | 486,243 |
C33⋊10(C3⋊S3) = C34⋊13S3 | φ: C3⋊S3/C3 → S3 ⊆ Aut C33 | 54 | | C3^3:10(C3:S3) | 486,248 |
C33⋊11(C3⋊S3) = C32×C33⋊C2 | φ: C3⋊S3/C32 → C2 ⊆ Aut C33 | 54 | | C3^3:11(C3:S3) | 486,258 |
C33⋊12(C3⋊S3) = C3×C34⋊C2 | φ: C3⋊S3/C32 → C2 ⊆ Aut C33 | 162 | | C3^3:12(C3:S3) | 486,259 |
C33⋊13(C3⋊S3) = C35⋊C2 | φ: C3⋊S3/C32 → C2 ⊆ Aut C33 | 243 | | C3^3:13(C3:S3) | 486,260 |
extension | φ:Q→Aut N | d | ρ | Label | ID |
C33.1(C3⋊S3) = (C3×He3)⋊S3 | φ: C3⋊S3/C1 → C3⋊S3 ⊆ Aut C33 | 81 | | C3^3.1(C3:S3) | 486,43 |
C33.2(C3⋊S3) = (C3×He3).S3 | φ: C3⋊S3/C1 → C3⋊S3 ⊆ Aut C33 | 81 | | C3^3.2(C3:S3) | 486,44 |
C33.3(C3⋊S3) = C33.(C3⋊S3) | φ: C3⋊S3/C1 → C3⋊S3 ⊆ Aut C33 | 81 | | C3^3.3(C3:S3) | 486,45 |
C33.4(C3⋊S3) = C32⋊C9⋊6S3 | φ: C3⋊S3/C1 → C3⋊S3 ⊆ Aut C33 | 81 | | C3^3.4(C3:S3) | 486,46 |
C33.5(C3⋊S3) = C3.(C33⋊S3) | φ: C3⋊S3/C1 → C3⋊S3 ⊆ Aut C33 | 81 | | C3^3.5(C3:S3) | 486,47 |
C33.6(C3⋊S3) = C3.(He3⋊S3) | φ: C3⋊S3/C1 → C3⋊S3 ⊆ Aut C33 | 81 | | C3^3.6(C3:S3) | 486,48 |
C33.7(C3⋊S3) = C32⋊C9.10S3 | φ: C3⋊S3/C1 → C3⋊S3 ⊆ Aut C33 | 81 | | C3^3.7(C3:S3) | 486,49 |
C33.8(C3⋊S3) = C9⋊He3⋊2C2 | φ: C3⋊S3/C1 → C3⋊S3 ⊆ Aut C33 | 81 | | C3^3.8(C3:S3) | 486,148 |
C33.9(C3⋊S3) = (C32×C9)⋊C6 | φ: C3⋊S3/C1 → C3⋊S3 ⊆ Aut C33 | 81 | | C3^3.9(C3:S3) | 486,151 |
C33.10(C3⋊S3) = C92⋊10C6 | φ: C3⋊S3/C1 → C3⋊S3 ⊆ Aut C33 | 81 | | C3^3.10(C3:S3) | 486,154 |
C33.11(C3⋊S3) = C92⋊4C6 | φ: C3⋊S3/C1 → C3⋊S3 ⊆ Aut C33 | 81 | | C3^3.11(C3:S3) | 486,155 |
C33.12(C3⋊S3) = C92⋊5C6 | φ: C3⋊S3/C1 → C3⋊S3 ⊆ Aut C33 | 81 | | C3^3.12(C3:S3) | 486,157 |
C33.13(C3⋊S3) = C92⋊11C6 | φ: C3⋊S3/C1 → C3⋊S3 ⊆ Aut C33 | 81 | | C3^3.13(C3:S3) | 486,158 |
C33.14(C3⋊S3) = C92⋊12C6 | φ: C3⋊S3/C1 → C3⋊S3 ⊆ Aut C33 | 81 | | C3^3.14(C3:S3) | 486,159 |
C33.15(C3⋊S3) = C33⋊(C3×S3) | φ: C3⋊S3/C1 → C3⋊S3 ⊆ Aut C33 | 27 | 18+ | C3^3.15(C3:S3) | 486,176 |
C33.16(C3⋊S3) = He3.C3⋊2C6 | φ: C3⋊S3/C1 → C3⋊S3 ⊆ Aut C33 | 27 | 18+ | C3^3.16(C3:S3) | 486,177 |
C33.17(C3⋊S3) = He3⋊(C3×S3) | φ: C3⋊S3/C1 → C3⋊S3 ⊆ Aut C33 | 27 | 18+ | C3^3.17(C3:S3) | 486,178 |
C33.18(C3⋊S3) = C3.He3⋊C6 | φ: C3⋊S3/C1 → C3⋊S3 ⊆ Aut C33 | 27 | 18+ | C3^3.18(C3:S3) | 486,179 |
C33.19(C3⋊S3) = 3- 1+4⋊C2 | φ: C3⋊S3/C1 → C3⋊S3 ⊆ Aut C33 | 27 | 18+ | C3^3.19(C3:S3) | 486,238 |
C33.20(C3⋊S3) = C33⋊2D9 | φ: C3⋊S3/C3 → S3 ⊆ Aut C33 | 27 | | C3^3.20(C3:S3) | 486,52 |
C33.21(C3⋊S3) = (C3×C9)⋊5D9 | φ: C3⋊S3/C3 → S3 ⊆ Aut C33 | 81 | | C3^3.21(C3:S3) | 486,53 |
C33.22(C3⋊S3) = (C3×C9)⋊6D9 | φ: C3⋊S3/C3 → S3 ⊆ Aut C33 | 81 | | C3^3.22(C3:S3) | 486,54 |
C33.23(C3⋊S3) = He3⋊2D9 | φ: C3⋊S3/C3 → S3 ⊆ Aut C33 | 81 | | C3^3.23(C3:S3) | 486,56 |
C33.24(C3⋊S3) = 3- 1+2⋊D9 | φ: C3⋊S3/C3 → S3 ⊆ Aut C33 | 81 | | C3^3.24(C3:S3) | 486,57 |
C33.25(C3⋊S3) = C33⋊D9 | φ: C3⋊S3/C3 → S3 ⊆ Aut C33 | 81 | | C3^3.25(C3:S3) | 486,137 |
C33.26(C3⋊S3) = C92⋊3C6 | φ: C3⋊S3/C3 → S3 ⊆ Aut C33 | 81 | | C3^3.26(C3:S3) | 486,141 |
C33.27(C3⋊S3) = He3⋊3D9 | φ: C3⋊S3/C3 → S3 ⊆ Aut C33 | 81 | | C3^3.27(C3:S3) | 486,142 |
C33.28(C3⋊S3) = C92⋊9C6 | φ: C3⋊S3/C3 → S3 ⊆ Aut C33 | 81 | | C3^3.28(C3:S3) | 486,144 |
C33.29(C3⋊S3) = C34⋊3S3 | φ: C3⋊S3/C3 → S3 ⊆ Aut C33 | 18 | 6 | C3^3.29(C3:S3) | 486,145 |
C33.30(C3⋊S3) = C34.7S3 | φ: C3⋊S3/C3 → S3 ⊆ Aut C33 | 18 | 6 | C3^3.30(C3:S3) | 486,147 |
C33.31(C3⋊S3) = (C32×C9)⋊S3 | φ: C3⋊S3/C3 → S3 ⊆ Aut C33 | 54 | 6 | C3^3.31(C3:S3) | 486,149 |
C33.32(C3⋊S3) = C3×C33⋊S3 | φ: C3⋊S3/C3 → S3 ⊆ Aut C33 | 18 | 6 | C3^3.32(C3:S3) | 486,165 |
C33.33(C3⋊S3) = C3×He3.3S3 | φ: C3⋊S3/C3 → S3 ⊆ Aut C33 | 54 | 6 | C3^3.33(C3:S3) | 486,168 |
C33.34(C3⋊S3) = C3×He3⋊S3 | φ: C3⋊S3/C3 → S3 ⊆ Aut C33 | 54 | 6 | C3^3.34(C3:S3) | 486,171 |
C33.35(C3⋊S3) = C3×3- 1+2.S3 | φ: C3⋊S3/C3 → S3 ⊆ Aut C33 | 54 | 6 | C3^3.35(C3:S3) | 486,174 |
C33.36(C3⋊S3) = C33⋊6D9 | φ: C3⋊S3/C3 → S3 ⊆ Aut C33 | 54 | | C3^3.36(C3:S3) | 486,181 |
C33.37(C3⋊S3) = He3⋊4D9 | φ: C3⋊S3/C3 → S3 ⊆ Aut C33 | 54 | 6 | C3^3.37(C3:S3) | 486,182 |
C33.38(C3⋊S3) = He3.(C3⋊S3) | φ: C3⋊S3/C3 → S3 ⊆ Aut C33 | 81 | | C3^3.38(C3:S3) | 486,186 |
C33.39(C3⋊S3) = C3⋊(He3⋊S3) | φ: C3⋊S3/C3 → S3 ⊆ Aut C33 | 81 | | C3^3.39(C3:S3) | 486,187 |
C33.40(C3⋊S3) = (C32×C9).S3 | φ: C3⋊S3/C3 → S3 ⊆ Aut C33 | 81 | | C3^3.40(C3:S3) | 486,188 |
C33.41(C3⋊S3) = C3≀C3⋊S3 | φ: C3⋊S3/C3 → S3 ⊆ Aut C33 | 27 | 6+ | C3^3.41(C3:S3) | 486,189 |
C33.42(C3⋊S3) = C3×C33.S3 | φ: C3⋊S3/C3 → S3 ⊆ Aut C33 | 54 | | C3^3.42(C3:S3) | 486,232 |
C33.43(C3⋊S3) = C3×He3.4S3 | φ: C3⋊S3/C3 → S3 ⊆ Aut C33 | 54 | 6 | C3^3.43(C3:S3) | 486,234 |
C33.44(C3⋊S3) = C34.11S3 | φ: C3⋊S3/C3 → S3 ⊆ Aut C33 | 81 | | C3^3.44(C3:S3) | 486,244 |
C33.45(C3⋊S3) = C9○He3⋊3S3 | φ: C3⋊S3/C3 → S3 ⊆ Aut C33 | 81 | | C3^3.45(C3:S3) | 486,245 |
C33.46(C3⋊S3) = C3.2(C9⋊D9) | φ: C3⋊S3/C32 → C2 ⊆ Aut C33 | 162 | | C3^3.46(C3:S3) | 486,42 |
C33.47(C3⋊S3) = C3×C9⋊D9 | φ: C3⋊S3/C32 → C2 ⊆ Aut C33 | 162 | | C3^3.47(C3:S3) | 486,134 |
C33.48(C3⋊S3) = C3×C32⋊2D9 | φ: C3⋊S3/C32 → C2 ⊆ Aut C33 | 54 | | C3^3.48(C3:S3) | 486,135 |
C33.49(C3⋊S3) = C92⋊8S3 | φ: C3⋊S3/C32 → C2 ⊆ Aut C33 | 243 | | C3^3.49(C3:S3) | 486,180 |
C33.50(C3⋊S3) = C32×C9⋊S3 | φ: C3⋊S3/C32 → C2 ⊆ Aut C33 | 54 | | C3^3.50(C3:S3) | 486,227 |
C33.51(C3⋊S3) = C3×C32⋊4D9 | φ: C3⋊S3/C32 → C2 ⊆ Aut C33 | 162 | | C3^3.51(C3:S3) | 486,240 |
C33.52(C3⋊S3) = C33⋊9D9 | φ: C3⋊S3/C32 → C2 ⊆ Aut C33 | 243 | | C3^3.52(C3:S3) | 486,247 |
C33.53(C3⋊S3) = C32×He3⋊C2 | central extension (φ=1) | 81 | | C3^3.53(C3:S3) | 486,230 |